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Laminar flow of compressible Newtonian fluids in capillaries is analysed. A perturb-
ation solution is obtained to the vorticity–stream function form of the hydrodynamics
equations for weakly compressible flow, having a relatively simple form. In contrast
with previous analyses of this flow, we find both a non-zero radial velocity and non-
zero radial pressure gradient. Expressions for pressure drop and friction factor are also
found that show significant deviations from the incompressible case (Hagen–Poiseuille
equation) that arise from both fluid inertia and bulk viscosity.

1. Introduction
Laminar flow in a circular tube is perhaps the most commonly encountered and

widely studied problem in fluid mechanics. Experimental (Hagen 1839; Poiseuille
1841) and theoretical (Stokes 1845; Hagenbach 1860) studies of capillary flow have a
long history dating back to the middle of the 19th century. For steady, laminar flow
of an incompressible Newtonian fluid of viscosity µ and density ρ0 in a capillary of
length L and radius R, the following relation holds:

W =
ρ0πR4�P

8µL

where W is the mass flow rate and �P is the pressure drop over the length of the
capillary. This equation, commonly referred to as the ‘Hagen–Poiseuille equation,’ is
an invaluable tool for the design of pipeline systems or for the analysis of capillary
viscometer experiments. In some cases, it is more convenient to use a friction factor
f , which is a dimensionless drag force on the capillary wall. In terms of the Darcy
friction factor, the Hagen–Poiseuille equation can be written as

f =
32

Re

where Re = W/πRµ � 103 is the criterion for laminar flow in a capillary. (Note that
this definition for Re is one-half the conventional definition using pipe diameter 2R.)

The Hagen–Poiseuille equation is derived assuming fully developed, isothermal
flow, and that the fluid properties (i.e. density and viscosity) are constant. For many
situations, such as the flow of water and organic liquids in ordinary-sized capillaries
and tubes, these assumptions are justified. For the flow of gases, however, in long
capillaries or at high speeds, the assumption that the fluid is incompressible is no
longer valid. The majority of work addressing the effect of compressibility in flow
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through capillaries has focused on gas flows where viscous effects are of secondary
importance (Shapiro 1953).

Situations where viscous effects and fluid compressibility are important include
flow through micro-capillaries and the flow of super-critical fluids and highly viscous
liquids. For example, pressure drops of ∼10 MPa are encountered in capillary
viscometry of polymeric liquids for capillaries with L/R ∼ 10 (Macosko 1994). Not
surprisingly, flows of polymer liquids through capillaries show significant deviations
from the Hagen–Poiseuille equation. However, even if the non-Newtonian nature of
the fluid is taken into account, significant differences between experiment and theory
remain. It is not clear whether these discrepancies are due to viscous dissipation,
compressibility, wall slip, or other factors (Macosko 1994). Flows of gases and
low-viscosity liquids in micro-tubes and capillaries (R ∼ 10 µm) also show significant
deviations from the Hagen–Poiseuille equation (Beskok, Karniadakis & Timmer 1996;
Gad-el-Hak 1999; Ho & Tai 1998). Several factors are thought to be responsible for
the deviations observed in micro-tube and micro-channel flows, including rarefaction
(slip), compressibility, surface roughness and electro-kinetic forces. However, the high
uncertainty inherent in experimental techniques for studying flows in micro-devices
has precluded attempts to determine the relative importance of these different factors
(Papautsky, Ameel & Fraizer 2001).

There are surprisingly few theoretical analyses of the flow of compressible viscous
fluids in capillaries. Prud’home, Chapman & Bowen (1986) and van den Berg, ten
Seldam & van der Gulik (1993a) found approximate analytical solutions of the
hydrodynamic equations using the lubrication approximation. These solutions are
expected to be sufficiently accurate for slow flow or flow in long capillaries (i.e.
R/L � 1). Zohar et al. (2002) adopted the approach used by van den Berg et al.
(1993a) to describe gas flows through micro-tubes and channels with wall slip. Guo &
Wu (1997, 1998) obtained numerical solutions of a simplified, two-dimensional form
of the hydrodynamic equations for compressible gas flow in a capillary. However, the
limited results presented in these papers were insufficient to assess the validity of the
lubrication approximation (Guo & Wu 1997, 1998).

In the present study, we analyse capillary flow of compressible Newtonian fluids
without the lubrication approximation. With this analysis, the effect of compressibility
on two-dimensional velocity and pressure fields is investigated. Expressions for
pressure drop and friction factor for the flow of compressible Newtonian fluids in
capillaries are presented. The present analysis also allows us to examine the validity
of approximations commonly employed to analyse this flow. The hydrodynamic
equations governing capillary flow of compressible viscous fluids, including the
vorticity–stream function formulation, are developed in § 2. The perturbation approach
used to find an analytical solution valid in the weakly compressible limit is described
in § 3. In § 4, we present solutions obtained using different approximations methods.
The results of the analysis are presented and discussed in § 5; conclusions of the study
are given in § 6.

2. Hydrodynamic equations
We consider the steady laminar flow of a compressible Newtonian fluid with

constant viscosity µ and bulk viscosity ζ in a capillary of radius R and length L (see
figure 1). For this analysis, we assume the flow is isothermal; criteria for the validity of
this assumption are given in the Appendix. The fluid density is assumed to be a linear
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Figure 1. Schematic of compressible capillary flow geometry. r = r∗/R; z̄ = z∗/L.

function of pressure with compressibility κ . We assume there is no circumferential
flow, there is symmetry about the axial coordinate and that gravitational effects are
negligible. The capillary wall is impermeable and we assume there is no slip at the
fluid/capillary-wall interface.

The governing equations are made dimensionless using characteristic quantities
associated with the flow of an incompressible fluid of density ρ0 and viscosity µ with
mass flow rate W . Hence, spatial positions are scaled by R, density by ρ0 and velocities
by W/ρ0πR2. Pressure, relative to P0, a reference pressure at the capillary wall exit, is
scaled by 8µLW/ρ0πR4. The assumptions stated above lead to the following for the
equation of state, continuity equation and equations of motion:

ρ = 1 + εP, (1)
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The overbar indicates quantities re-scaled by the capillary aspect ratio: z̄ = αz; Ū =
U/α. Equations (1)–(4) contain the following dimensionless parameters:

χ =
ζ

µ
, α =

R

L
, Re =

W

πRµ
, ε =

8µLWκ

ρ0πR4
=

8γMa2

αRe
,

γ =
CP

CV

and Ma =
W

ρ0πR2c
,

where c2 = γ (∂P/∂ρ)T is the speed of sound. We consider subsonic flows so that
Ma <1. Note that both Re and Ma are based on the characteristic velocity and density
at the capillary exit. Generally, for low-density, monatonic gases it is assumed that
χ = 0, but for dense gases and liquids, χ can be large (Karim & Rosenhead 1952).

Now we briefly discuss the previous studies on compressible viscous fluid flow
in capillaries. In the analyses of Prud’home et al. (1986) and van den Berg et al.
(1993a), the radial velocity and radial pressure gradient were assumed to be zero;
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equations (2) and (4) with Ū = 0 were solved using perturbation methods. Prud’home
et al. (1986) considered the flow of a monatomic ideal gas (ρ ∝ P , χ = 0) and found
expressions for V (r, z̄) and P (z̄) as expansions in the parameters α and ε. van den
Berg et al. (1993a) considered the flow of a fluid with an arbitrary equation of state
and obtained a perturbation solution for V (r) in terms of parameters involving αReε

and (χ + 4/3)α2ε2. From (3), we see however that Ū = 0 does not necessarily imply
that the radial pressure gradient is zero; this fact was noted by van den Berg et al.
(1993a). It is evident from (3) that a radially uniform pressure field is obtained
for αRe � 1, χ � 1 if all terms order αn for n � 2 are neglected – the so-called
lubrication approximation (Batchelor 1967). In the analyses performed by Prud’home
et al. (1986) and van den Berg et al. (1993a), terms of order α2 have been retained
in (4), but neglected in (3); hence, they do not satisfy the compatibility condition for
the equations of motion.

Velocity boundary conditions along the centreline and capillary wall are

Ū (0, z̄) =
∂V

∂r
(0, z̄) = 0, 0 � z̄ � 1, (5a, b)

Ū (1, z̄) = V (1, z̄) = 0, 0 � z̄ � 1. (6a, b)

In addition, we specify a reference pressure at the wall of the capillary exit as follows:

P (1, 1) = 0 (7)

Equations (2)–(4) can also be expressed in terms of a stream function ψ defined
by

Ū =
1

rρ

∂ψ

∂z̄
, V = − 1

rρ

∂ψ

∂r
, (8a, b)

and vorticity ω defined by

ω = α2 ∂Ū

∂z̄
− ∂V

∂r
. (9)

Using (2)–(4), (8) and (9), the pressure gradient can be expressed as
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(11)

If (10) is differentiated with respect to z̄, (11) with respect to r , and these results are
combined using (8) and (9), the following form of the vorticity transport equation is
obtained:
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The vorticity transport equation for compressible and viscous fluids is rarely
considered in fluid mechanics. The first line of (12) governs vorticity transport for
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incompressible flow; the last term on the right-hand side represents the intensification
of vorticity from vortex tube stretching (Batchelor 1967). The first term in the second
line of (12) is vorticity intensification due to the dilation of vortex tubes. The second
and third terms in the second line of (12) can be thought of as source terms from
torques exerted on vortex tubes arising from fluid expansion.

Finally, if (8) is substituted in (9), we obtain

r
∂

∂r

(
1

r

∂ψ

∂r

)
+ α2 ∂2ψ

∂z̄2
= ρωr +

(
α2Ū

∂ρ

∂z̄
− V

∂ρ

∂r

)
r. (13)

It is interesting to note the effect compressibility has on the equations governing
vorticity and stream function. Both (12) and (13) have an implicit dependence on
P through ρ. Consequently, in contrast to constant-density flows, pressure is not
eliminated by reformulating the governing equations in terms of vorticity and stream
function. We will see however that the solution method developed in the next section
is facilitated by considering the vorticity–stream function formulation.

The following set of boundary conditions can be derived from (5) and (6):

ψ(0, z̄) =
1

2
, ω(0, z̄) = 0, 0 � z̄ � 1, (14a, b)

∂ψ

∂r
(1, z̄) = ψ(1, z̄) = 0, ρ(1, z̄)ω(1, z̄) =

∂2ψ

∂r2
(1, z̄), 0 � z̄ � 1. (15a, b, c)

The boundary condition in (14a) fixes the (dimensionless) mass flow rate at a value of
one. The vorticity boundary condition at the capillary wall given in (15c) was derived
using (15a) and (15b) in (13) (Vrentas, Duda & Bargeron 1967).

In order to solve (3) and (4) for Ū and V , or (12) and (13) for ω and ψ , which
are both elliptic PDEs, boundary conditions are required at the capillary entrance
and exit. The specification of boundary conditions at the entrance and exit to a flow
domain is a delicate issue (Van Dyke 1970; Wilson 1971). The issue of inlet and outlet
boundary conditions will be addressed later.

3. Perturbation solution
The equations governing the flow of a compressible Newtonian fluid in a capillary

are nonlinear, and, consequently, it is not possible to find an exact analytical solution.
The situation of interest is one involving a small departure from laminar flow of
an incompressible liquid in capillary, which corresponds to a small value of the
parameter ε. Based on this, we seek an approximate solution of the governing
equations formulated in the previous section using perturbation methods. Before
proceeding, it worthwhile to note that in previous analyses (Prud’home et al. 1986; van
den Berg et al. 1993a), very different perturbation schemes were used. In both cases,
the lubrication approximation is implicitly invoked since the radial pressure gradient
was assumed negligible, yet the capillary aspect ratio α was used in the perturbation
scheme. In the scheme used by van den Berg et al. (1993a), lumped perturbation
parameters αReε and (χ +4/3)α2ε2 were used making it difficult to isolate the effects
of compressibility, inertia and bulk viscosity. For this flow, compressibility induces
inertial forces and volumetric deformations. Hence, it seems preferable to use a single
perturbation parameter and allow the dimensionless parameters dictating these effects
to arise in a natural way.
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Writing the dependent variables as expansions in the perturbation parameter ε, we
have

ρ = ρ(0) + ερ(1) + ε2ρ(2) + O(ε3), (16)

P = P (0) + εP (1) + ε2P (2) + O(ε3), (17)

Ū = Ū (0) + εŪ (1) + ε2Ū (2) + O(ε3), (18)

V = V (0) + εV (1) + ε2V (2) + O(ε3), (19)

ψ = ψ (0) + εψ (1) + ε2ψ (2) + O(ε3), (20)

ω = ω(0) + εω(1) + ε2ω(2) + O(ε3). (21)

Here we employ a regular perturbation scheme substituting the expressions in (16)–
(21) in the hydrodynamic equations and collecting terms of the same order in the
perturbation parameter ε.

3.1. Zero-order solution

As noted in the previous section, it is convenient to consider the vorticity–stream
function formulation for this flow. The equations governing the zero-order stream
function ψ (0) defined by
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The solutions of (24) and (25) subject to the boundary conditions

ψ (0)(0, z̄) = 1
2
, ω(0)(0, z̄) = 0, (26a, b)
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The pressure gradient can be expressed as
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)
, (30)

which is integrated with the condition

P (0)(1) = 0. (31)
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Hence, from (28)–(31), we find the following for the zero-order axial velocity and
pressure:

V (0) = 2(1 − r2), (32)

P (0) = 1 − z̄. (33)

Equations (32) and (33) correspond to the well-known solution for laminar flow of
an incompressible Newtonian fluid in a capillary.

3.2. First-order solution

The equations governing the first-order stream function ψ (1) defined by
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Equation (36) governing ω(1) is a convection–diffusion equation with a source due to
vortex tube dilation. Boundary conditions along the centreline and capillary wall for
(36) and (37) are given by

ψ (1)(0, z̄) = ω(1)(0, z̄) = 0, 0 � z̄ � 1, (38a, b)

∂ψ (1)

∂r
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(39a, b, c)
As noted above, we have not specified boundary conditions at the capillary entrance

and exit. Here, we construct a solution by assuming simple functional forms for ω(1)

and ψ (1) that satisfy (36) and (37): ω(1) = −4r(1 − z̄) plus a function of r , and ψ (1) is
a function of r only. This procedure leads to solutions of (36)–(39) given by
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3
α Re r(3 − 6r2 + 2r4), (40)
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which is integrated subject to the condition

P (1)(1, 1) = 0. (44)
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From (34) and (40)–(44), we obtain the following for the axial velocity and pressure:

V (1) = 2(1 − r2)
[

− (1 − z̄) − 1
36
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]
, (45)
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)
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This analysis shows that to first order in ε, the radial velocity is zero, the axial velocity
deviates from a parabolic distribution and the pressure field is not uniform in the
radial direction.

3.3. Second-order solution

The equations governing the second-order stream function ψ (2) defined by
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and vorticity ω(2)
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Note that at second order, the radial convection and vortex tube stretching terms in
(12) cancel. The source terms in (49) governing ω(2) are due to axial convection of
vorticity and vortex tube dilation. The boundary conditions along the centreline and
capillary wall for (49) and (50) are

ψ (2)(0, z̄) = ω(2)(0, z̄) = 0, 0 � z̄ � 1, (51a, b)

∂ψ (2)

∂r
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3
αRe(1 − z̄),

0 � z̄ � 1. (52a, b, c)

As before, in the absence of a complete set of boundary conditions, we construct
solutions by postulating the simplest expressions for ω(2) and ψ (2) that satisfy (49)–(52).
These are
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ψ (2) = − 1
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The second-order pressure gradient can be written as
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which can be integrated subject to the condition

P (2)(1, 1) = 0. (57)

From (47) and (53)–(56), we find following expressions for the second-order velocity
and pressure:
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α2Re2(43 − 957r2 + 2343r4 − 1257r6 + 168r8)

]
, (59)

P (2) = 1
2
(1 − z̄)3 − 1

12
α2

(
1
3

+ χ
)
(11 − 9r2)(1 − z̄) − 1

2
αRe(1 − z̄)2 − 1

2
α2(1 − z̄)

+ 1
27

α2Re2(1 − z̄)2 + 1
144

α3Re(1 − r2)
[
(4 − 14r2 + 4r4) +

(
1
3
+ χ

)
(7 + 7r2 − 2r4)

]
.

(60)

3.4. Two-dimensional velocity and pressure fields

We now combine the zero-, first- and second-order solutions derived above. The
velocity and pressure fields are given by

U = αŪ = 1
36

ε2α2Re r(1 − r2)2(4 − r2) + O(ε3), (61)

V = 2(1 − r2)

[
1 − ε(1 − z̄) + 3

2
ε2(1 − z̄)2 − 1

36
εαRe(2 − 7r2 + 2r4)

− 1
12

ε2αRe(1 + 7r2 − 2r4)(1 − z̄) − 1
6
ε2α2

(
1
3

+ γ
)

+ 1
16

ε2α2(1 − 3r2)

+
1

43200
ε2α2Re2(43 − 957r2 + 2343r4 − 1257r6 + 168r8)

]
+ O(ε3), (62)

P = (1 − z̄) − 1
2
ε(1 − z̄)2 + 1

4
εαRe(1 − z̄) + 1

4
εα2

(
1
3

+ γ
)
(1 − r2) + 1

2
ε2(1 − z̄)3

− 1
2
ε2α2(1 − z̄) − 1

12
ε2α2

(
1
3

+ χ
)
(11 − 9r2)(1 − z̄) − 1

2
ε2αRe(1 − z̄)2

+ 1
27

ε2α2Re2(1 − z̄)2 + 1
144

ε2α3Re(1 − r2)
[
(4 − 14r2 + 4r4)

+
(

1
3

+ χ
)
(7 + 7r2 − 2r4)

]
+ O(ε3). (63)

The density field to third order in ε is obtained by substitution of (63) in (1). It
appears that (61) to (63) are the first two-dimensional velocity and pressure fields for
capillary flow of compressible Newtonian fluids.
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3.5. Inlet and outlet boundary conditions

As noted earlier, the velocity and pressure fields in (61)–(63) were obtained without
specifying velocity boundary conditions on the closed domain at z̄ = 0, 1. In fact,
(7), the boundary condition for pressure at the capillary wall, is the only boundary
condition involving a particular axial position (z̄ = 1) within the capillary. One
approach would be to assume slip tube flow at the capillary ends (Vrentas et al.
1967) so that velocity boundary conditions could be imposed at distances far from
the capillary entrance and exit (Vrentas et al. 1967). However, this would result in
mixed boundary conditions along the composite tube making it very difficult to find
an analytical solution.

A solution obtained with an incomplete set of boundary conditions raises the
question of its generality. One response to this question is that the velocity and
pressure fields in (61)–(63) appear to be the simplest (non-trivial) solutions of the
governing equations, but it is possible that more complex solutions exist. Schwartz
(1987), in a two-dimensional analysis of compressible gas flow through a channel,
avoided this issue by using a perturbation parameter involving the flow-direction
coordinate normalized by a local wall pressure.

If boundary conditions at the inlet and outlet are to be specified, then the question
is: what are these conditions? The answer is not at all obvious. The velocity fields
given by (61) and (62) at z̄ = 0, 1 (see figures 3–5) show modest deviations from
the incompressible flow case: Ū = 0, V = 2(1 − r2). Similarly, the pressure field (see
figure 3) given in (63) indicates that pressure is not uniform at the inlet and outlet.
Unfortunately, published numerical solutions to this flow provide little guidance on
this issue. For example, Guo & Wu (1997, 1998) only specify velocity boundary
conditions Ū = 0, V = 2(1 − r2), at the capillary inlet; Harley et al. (1995) only
specify uniform pressures at the channel inlet and outlet.

For the flow of incompressible fluids, it is common to divide the capillary into
entrance, fully developed flow, and exit regions. The solution for incompressible
flow in the fully developed region (the zero-order solution in the present analysis)
is obtained without specifying velocity boundary conditions at the inlet and outlet;
it is implicitly assumed that this solution matches the velocity and pressure fields
in the entrance and exit regions. While it is clear that a fully developed flow state
does not exist for compressible flow, we assert that the same assumption holds.
Indeed, this assumption is implicitly made in analyses based on the locally fully
developed flow (lubrication) approximation. Hence, we argue the inlet and outlet
velocity and pressure fields of the ‘developing compressible flow’ region match those
in the transition regions at the capillary entrance and exit.

4. Approximate solutions
The two-dimensional solution presented in the previous section is valid for weakly

compressible flow in a capillary. As noted in the introduction, other approximate
solutions for this flow have been found. In this section, these approximate solutions
are presented in order that comparisons with the solution obtained in the present
study can be made.

4.1. One-dimensional approximation

It is common in the analysis of compressible flow to consider radially averaged forms
of the conservation equations (Shapiro 1953). The radial average of a quantity (· · ·)
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is defined as follows:

〈(· · ·)〉 = 2

∫ 1

0

(· · ·)r dr. (64)

Application of (64) to the continuity equation (2) and using (5a) and (6a) gives, after
integration over z̄ from 0 to 1,

〈ρV 〉1 = 〈ρV 〉0 = 〈ρ〉〈V 〉 + O(ε2), (65)

where the second equality follows from (1) and (63). Here, the subscripts 0 and 1
correspond to axial positions z̄ = 0 and z̄ = 1, respectively. Similarly, application of
(64) to (4) and integration over z̄ gives

αRe[〈ρ〉1〈V 2〉1 − 〈ρ〉0〈V 2〉0] = −8[〈P 〉1 − 〈P 〉0] − 1
4
f Re + O(ε2), (66)

where f is the (Darcy) friction factor defined as

f = − 8

Re

∫ 1

0

∂V

∂r
(1, z̄) dz̄. (67)

Now, if, as it is commonly assumed, we set 〈V 2〉 � 〈V 〉2 (Shapiro 1953), and (1),
(62) and (63) are substituted in (66), we obtain the following expression for the
one-dimensional model friction factor:

f Re

32
= 1 − 1

2
ε + 1

8
εαRe + O(ε2). (68)

4.2. Lubrication approximation

As noted earlier, Prud’home et al. (1986) and van den Berg et al. (1993a) assumed that
both the radial velocity and radial pressure gradient could be neglected (lubrication
approximation) and solved (2) and (4). With Ū = 0 and P = P (z̄), (2) can be
integrated to give:

V =
E

ρ
(69)

where E = E(r) and ρ = ρ(z̄). Substitution of (69) in (4) gives

−αRe
1

ρ

dρ

dz̄
E2 = −8ρ

dP

dz̄
+

1

r

d

dr

(
r
dE

dr

)
− α2

(
4

3
+ χ

)
E

ρ

[
d2ρ

dz̄2
− 2

ρ

(
dρ

dz̄

)2
]

. (70)

Prud’home et al. (1986) solved (70) with ρ ∝ P and χ = 0 by expanding E and P as
double perturbation expansions in the parameters α and ε. The expression for axial
velocity found by Prud’home et al. (1986) has a structure similar to (62) with respect
to the grouping of the dimensionless parameters (ε, α, Re). However, in contrast to
(63), the pressure field obtained by Prud’home et al. (1986) is independent of Re.

Here, we focus on the solution obtained by van den Berg et al. (1993a) who solved
(70) using a somewhat different approach. The same approach has been adopted in
more recent analyses of compressible flow in capillaries and channels (Zohar et al.
2002). In van den Berg et al. (1993a), (70) is integrated over the length of the capillary,
fixing the pressure at both ends; an approximate expression for the last term in (70)
is introduced since it cannot be integrated exactly. As shown in the perturbation
solution developed in the present study, the pressure field is uniform in the radial
direction for χ � 1, αRe � 1 only if α2 � 1. Based on this, we neglect the last term
in (70) and integrate over the length of the capillary using (1) with P (1) = 0 and
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P (0) = �P , which gives

αRe ln[ρ(�P )]E2 = 8ρ̄�P +
1

r

d

dr

(
r
dE

dr

)
(71)

where ρ̄ is defined as (van den Berg et al. 1993a)

ρ̄ =
1

�P

∫ �P

0

ρ dP. (72)

Substituting E = E(0) + αReE(1) + · · · in (71) and solving the resulting system of
equations (van den Berg et al. 1993a), the following expression for E is obtained:

E = 2(1 − r2)ρ̄�P

[
1 − 1

36
αReρ̄�P ln[ρ(�P )](11 − 7r2 + 2r4)

− 1

14400
(αRe)2(ρ̄�P ln[ρ(�P )])2(2457 − 1943r2 − 957r4 + 243r6 − 32r8)

]
+ O((αRe)3). (73)

The solution given in van den Berg et al. (1993a) is derived for an arbitrary equation
of state ρ(P ). To facilitate comparison with the present work, we use the equation of
state in (1) so that ρ̄ = 1 + ε�P/2 and ρ̄�P ln[ρ(�P )] = ε�P 2[1 + ε2�P 2/12 + · · ·].
Combining these results with (8b), (14a), (15b), (69) and (73), gives the following
implicit expression for �P :

�P = 1 − 1
2
ε�P 2 + 1

4
εαRe�P 3 + 1

8
ε2αRe�P 4 − 73

540
ε2α2Re2�P 5 + O(ε3)

� 1 − 1
2
ε + 1

4
εαRe + 1

8
ε2αRe − 73

540
ε2α2Re2. (74)

According to (69), the axial velocity is found by dividing E(r) by ρ(z̄). However, by
integrating (70) over the length of the capillary, ρ(z̄) cannot be determined; only the
average density ρ̄ defined in (72) is known. If we assume V � E/ρ̄ and use (73) and
(74), we find the following expression for the axial velocity:

V � 2(1 − r2)

[
1 − 1

2
ε − 1

36
εαRe(2 − 7r2 + 2r4) + 1

24
ε2αRe(14 − 7r2 + 2r4)

− 1

43200
ε2α2Re2(8369 − 471r2 − 1071r4 + 729r6 − 96r8)

]
. (75)

Expressions for axial velocity from the lubrication approximation model (75) and
two-dimensional model (62) with χ � 1 and α2 � 1 are in agreement up to first order
in ε. This is not surprising since the pressure field is uniform and radial velocity is
zero to first order in ε for this case. However, significant deviations between (62) and
(75) are apparent at second order in ε.

In the creeping flow limit where αRe � 1, it is possible to find an analytical solution
for the lubrication approximation model. For χ � 1, α2 � 1 and αRe � 1, (12) and
(13) simplify to

∂

∂r

(
1

r

∂

∂r
(rω)

)
= 0, (76)

∂

∂r

(
1

r

∂ψ

∂r

)
= ρω. (77)
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Integration of (76) and (77) subject to the boundary conditions in (14) and (15) gives

ω =
4

ρ
r, (78)

ψ =
1

2
−

(
1 − r2

2

)
r2. (79)

From (11), the pressure gradient for χ � 1, α2 � 1 and αRe � 1 is given by

8
dP

dz̄
= −1

r

∂

∂r
(rω) (80)

which, when integrated subject to (7), gives

P =

√
1 + 2ε(1 − z̄) − 1

ε
= (1 − z̄) − 1

2
ε(1 − z̄)2 + 1

2
ε2(1 − z̄)3 + O(ε3). (81)

From (1), (8), (79) and (81), we find Ū = 0 and

V =
2

ρ
(1 − r2) = 2(1 − r2)

[
1 − (1 − z̄)ε + 3

2
(1 − z̄)2ε2 + O(ε3)

]
. (82)

If the expression for P is expanded as a power series to second order in ε, as shown
in (81), the second-order result agrees with the exact expression for ε � 0.25. As
expected, we find agreement between (62) and (82) and between (63) and (81) for
χ � 1, αRe � 1 and α2 � 1.

5. Results and discussion
The velocity and pressure fields given in (61)–(63) appear to be the first two-

dimensional, analytical solutions for capillary flow of compressible Newtonian fluids.
In contrast to previous analyses (Prud’home et al. 1986; van den Berg et al. 1993a),
we find a non-zero radial velocity and non-zero radial pressure gradient. The axial
velocity deviates from a parabolic radial dependence at first order in ε due to fluid
inertia. At second order in ε, bulk viscosity leads to a reduction of the axial velocity,
but does not affect its distribution. The flattening of the axial velocity profile with
increasing εαRe predicted by (62) is consistent with the numerical results of Guo &
Wu (1997, 1998). The expression for the pressure field in (63) shows radial dependence
at first order in ε due to bulk viscosity and at second order in ε due to bulk viscosity
and inertia. It is clear from (63) that the lubrication approximation, which implies a
radially uniform pressure, is valid for χ � 1, αRe � 1 only for long capillaries where
α2 � 1. Unfortunately, the numerical results presented by Guo & Wu (1997, 1998) do
not include radial velocity or radial pressure variations (if they were observed).

In the absence of comparable velocity and pressure fields from analytical and
numerical solutions for compressible flow in capillaries, we briefly discuss results from
studies of compressible flow in channels. Schwartz (1987) obtained a two-dimensional
perturbation solution for the flow of a compressible gas through a channel. These
velocity fields are consistent with those found here in that the transverse velocity was
order ε2α2Re, as in (61); deviations from a parabolic axial velocity were order εαRe,
as in (62). Harley et al. (1995) presented numerical solutions for compressible channel
flow that displayed both transverse velocity and pressure gradient. It is important
to note that these flow features, which are consistent with those reported in this
study, were observed by imposing uniform pressures at the capillary entrance and exit
(Harley et al. 1995).
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Figure 2. Vorticity field contours for ε = 0.25 from (83): (a) solid lines for αRe = 1;
α2(1/3 + χ) � 1; (b) dashed-dot lines for αRe � 1; α2(1/3 + χ) = 1.

5.1. Vorticity, velocity and pressure fields

From the expressions given in (61)–(63), it is clear that in addition to the
compressibility parameter ε, the velocity and pressure fields are influenced by αRe
and α2(1/3 + χ). Bulk viscosity data are scarce, but for ordinary liquids 1 � χ � 102

(Karim & Rosenhead 1952), and for gases χ � 1. Since α � 1/10, for gas flows it is
clear that α2(1/3+χ) � 1; for liquid flows in short capillaries, we use α2(1/3+χ) = 1
as an upper bound. Based on a comparison of the exact expression and series
expansion in (81), the compressibility parameter is limited to values ε � 0.25. In
addition, for laminar flows Re � 103 so that we are restricted to αRe � 102. Finally,
since we are considering subsonic flows Ma =

√
εαRe/γ 8 < 1.

It is instructive to examine the effects of compressibility on vorticity. From the
perturbation solution presented in the previous section, the vorticity field to second
order is given by

ω = 4r
[
1 − ε(1 − z̄) − 1

12
εαRe(3 − 6r2 + 2r4) + 3

2
ε2(1 − z̄)2 + 1

4
ε2α2

(
1 − 3

2
r2

)
− 1

6
ε2α2

(
1
3

+ γ
)

+ 1
2
ε2αRe(1 − 3r2 + 2r4)(1 − z̄) + 1

2160
ε2α2Re2(50 − 330r2

+ 540r4 − 285r6 + 42r8)
]
+ O(ε3). (83)

For incompressible flow, the radial diffusion of vorticity towards the centre of the
capillary is exactly balanced by the rate at which it is generated at the capillary
wall. For compressible flow, density decreases while axial velocity increases (so that
mass flow rate is constant) from the capillary entrance to the capillary exit. Hence,
the vorticity generated at the capillary wall increases along the capillary. The axial
gradient in vorticity gives rise to diffusion of vorticity towards the capillary entrance
and convection of vorticity towards the capillary exit. Vorticity contours for ε = 0.25
with αRe = 1, α2(1/3+χ) � 1 and α2(1/3+χ) = 1, αRe � 1 are shown in figures 2(a)
and 2(b). In both cases, fluid compressibility causes vorticity tubes to expand and
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Figure 3. Pressure field contours for ε = 0.25 from (63): (a) solid lines for αRe = 1;
α2(1/3 + χ) � 1; (b) dashed-dot lines for αRe � 1; α2(1/3 + χ) = 1.
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Figure 4. Axial velocity field deviation from incompressible flow: (a) from (62) for ε = 0.25,
αRe = 1, α2(1/3 + χ ) � 1 (b) αRe � 1, α2(1/3 + x) = 1 at various axial positions: z̄ = 0, 0.25,
0.5, 0.75, 1.0 (bottom to top).

stretch near the capillary wall, moving towards the capillary entrance. For αRe = 1,
axial convection of vorticity concentrates vorticity near the capillary wall.

Pressure contours predicted by (63) are shown in figure 3 for the same cases shown
in figure 2. Deviations from the incompressible case, for which pressure contours
are equally spaced vertical lines, are evident in both cases. Although the pressure
contours for αRe = 1, α2(1/3 + χ) � 1 appear to be vertical lines, a small and
negative radial pressure gradient is predicted by (63) for this case. The pressure
contours for α2(1/3 + χ) = 1, αRe � 1 show an appreciable radial pressure gradient
resulting from bulk viscosity.

Figures 4(a) and 4(b) show the axial velocity field predicted by (62) for ε = 0.25.
For αRe = 1 shown in figure 4(a), fluid inertia (αRe = 1) causes a pronounced
flattening of the axial velocity profile from its parabolic shape as the fluid passes
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Figure 5. Radial velocity field for ε = 0.25 and α = 1/10 from (61): solid line for αRe = 1;
α2(1/3 + χ) � 1; dashed-dot line for αRe � 1; α2(1/3 + χ) = 1.

through the capillary. This behaviour is consistent with numerical results obtained by
Guo & Wu (1997, 1998). For the case where α2(1/3 + χ) = 1 (figure 4b), the effect of
bulk viscosity is small and the axial velocity distribution remains parabolic.

Figure 5 shows the radial velocity field predicted by (61) for ε = 0.25. For αRe = 1
and α = 1/10, U is positive indicating a small radial flow towards the capillary
wall. The radial flow arises from simple mass conservation and the coupling between
inertia and compressibility. As fluid passes through the capillary, fluid inertia leads to
a flattening of the axial velocity and compressibility leads to a reduction in density.
The coupling of these two effects, through the ρω term in (13), induces a radial
velocity at second order in ε. The small radial flow induces a small radial pressure
gradient. In the absence of inertia, the velocity field remains parabolic and radial
flow is not required to satisfy mass conservation. The relatively large radial pressure
gradient for α2(1/3 + χ) = 1 shown in figure 3(b) is balanced by the isotropic stresses
induced by a large bulk viscosity.

5.2. Friction factor and pressure drop

The friction factor for the two-dimensional analysis is obtained by substitution of
(62) in (67), which gives

f Re

32
= 1 −

[
1
2

− 1
12

αRe
]
ε +

[
1
2

− 1
8
α2 − 1

6
α2

(
χ + 1

3

)
− 1

4
αRe+ 17

2160
α2Re2

]
ε2 + O(ε3).

(84)

Comparison of (68) and (84) shows that the one-dimensional model over-predicts the
effect of inertia; this error is due to the approximation 〈V 2〉 � 〈V 〉2. For ε = 0.1,
αRe � 10, the one-dimensional model over-predicts the friction factor by roughly
10 %.
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Figure 6. Comparison of pressure drops from different analyses for ε = 0.1. Two-dimensional
model (86): solid line for α2(1/3 + χ) � 1; lubrication approximation model (74): dashed-dot
line. Also shown by the dotted line is the friction factor prediction for the two-dimensional
model (84).

Viscosity measurements are often made using capillaries by measuring the pressure
drop for a given flow rate, or vice versa for a capillary of known dimensions. The
pressure drop is obtained from the pressures measured in fluid reservoirs at the
entrance and exit of the capillary. Hence, the measured pressure reflects the difference
in total stress at the ends of the capillary

�P = 〈P (r, 0)〉 − 〈P (r, 1)〉 − α2

8

(
4
3

+ χ
)[〈

∂V

∂z̄
(r, 0)

〉
−

〈
∂V

∂z̄
(r, 1)

〉]
. (85)

Substitution of (62) and (63) in (85) gives

�P = 1 −
[

1
2

− 1
4
αRe

]
ε +

[
1
2

− 1
8
α2 − 1

6
α2

(
1
3
+ χ

)
− 1

2
αRe + 1

27
α2Re2

]
ε2 + O(ε3). (86)

Equation (86) gives the pressure drop for capillary flow of compressible Newtonian
fluids. The first term in (86) is the dimensionless form of the Hagen–Poiseuille
equation, and the terms that follow give corrections due to fluid compressibility. In
the absence of inertia and bulk viscosity effects, compressibility decreases the pressure
drop. This is easily explained by the reduction in axial velocity, and hence shear stress,
to compensate for the increase in density towards the capillary entrance. A large bulk
viscosity further reduces the pressure drop, which is due to a small reduction in the
axial velocity. Inertia, which results from fluid acceleration along the capillary, leads
to a pronounced increase in pressure drop.

The pressure drop prediction from the two-dimensional model (86) is plotted in
figure 6 for ε = 0.1 with α2 and α2(1/3 + χ) terms neglected. The pressure drop for
compressible flow is constant and reduced by approximately 5 % for αRe < 0.1, or
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Figure 7. Friction factor based on pressure drop from (87) for different values of α2B = 0.1,
1.0, 10 (bottom to top). Solid curves are drawn for values of αRe such that ε � 0.25.

Ma < 0.03. For αRe � 1 (Ma � 0.1), the pressure drop increases dramatically above
the incompressible value. Also shown in figure 7 is the pressure drop prediction for
the lubrication approximation model, which was obtained by numerically solving (74)
for �P . It is clear from figure 6 that the lubrication approximation model drastically
under-predicts the pressure drop for αRe � 3.

It is common to define the friction factor in terms of pressure drop, rather than a
drag force as in (67). For incompressible flow in a capillary, the results are identical:
f Re/32 = 1. For compressible flow, f Re/32 = �P , where �P is given by (86).
Although similar, (84) and (86) differ by the numerical factors for the inertial (αRe)
terms, which are significantly larger in (86) than in (84). These two friction factors
are compared in figure 6 and clearly demonstrate that the effect of inertia on pressure
drop is significantly larger than on drag force for compressible flow in capillaries.

As noted in the introduction, flows of gases and liquids in micro-capillaries
commonly show deviations from the Hagen–Poiseuille equation. In most cases, the
pressure drop is imposed and the resulting flow rate is measured. Hence, for a given
set of experiments, the compressibility parameter ε is not constant. It is easy to show
that ε = αRe/α2B where

α2B =
ρ0R

4

8κµ2L2

is a parameter that depends only on fluid properties and dimensions of the capillary.
Hence, the expression for friction factor (or pressure drop) given in (86) can be written
as

f Re

32
= �P = 1 − 1

2

αRe

α2B
+

1

2

(αRe)2

α2B
+

1

4

(αRe)2

(α2B)2
− 1

2

(αRe)3

(α2B)2
+

1

27

(αRe)4

(α2B)2
+ · · · , (87)

where α2 and α2(1/3 + χ) terms have been neglected. The friction factor (based
on pressure drop) from (87) versus flow rate (αRe) is shown in figure 7; the solid
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curves are drawn for values of αRe such that ε � 0.25. Values of the parameter α2B

correspond to gas (<1) and liquid flow (>1) in a long (α = 10−3) micro-capillary
(R = 25 µm). As shown in figure 7, for αRe < 1 and α2B � 1, the friction factor is
from zero to 10 % smaller than the value for incompressible flow. This is consistent
with a large number of experiments on gas flows in micro-capillaries and channels
(Papautsky et al. 2001). The predicted decrease in friction factor with decreasing
capillary radius R and increasing Re has also been reported by Araki et al. (2000) for
gas flows in micro-capillaries. The predicted increase in friction factor for αRe > 1
and α2B = 10 is consistent with the observations of Li, Du & Guo (2003) for water
flows through micro-capillaries.

6. Conclusions
A two-dimensional solution for laminar flow of compressible Newtonian fluids in

capillaries has been obtained. This solution, obtained using standard perturbation
methods on the vorticity–stream function form of the governing hydrodynamics
equations, predicts both a non-zero radial velocity and non-zero radial pressure
gradient. These features of the velocity and pressure fields were neglected in previous
analyses of this flow.

The effects of fluid inertia and bulk viscosity were examined and found to produce
qualitatively different velocity and pressure fields. Fluid inertia has a significant effect
on the axial velocity distribution and is responsible for the radial velocity. Bulk
viscosity leads to a radial pressure gradient, but has little effect on the velocity field.
Expressions for pressure drop and friction factor have been derived from the two-
dimensional analysis. For slow flows (αRe � 1, Ma � 0.1), compressibility reduces
pressure drop; for subsonic, high-speed flows (αRe >1, 0.1 <Ma < 1), pressure drop
increases dramatically. These trends are consistent with reported experimentals tudies
on flows in micro-tubes and channels. Results from the two- dimensional analysis
have been compared to results obtained using the one-dimensional and lubrication
approximations. Deviations from the two-dimensional solution are observed at first
order for the one-dimensional and at second order for lubrication approximation
solutions. Friction factor and pressure drop predictions from the lubrication
approximation model show significant deviations from those obtained with the two-
dimensional solution when inertial effects become important.

The perturbation solution presented here represents an important advance in the
analysis of compressible viscous fluid flow through capillaries. The approach used to
obtain this solution could easily be applied to channels flows and to flows of rarified
gases where slip is important. The study has also revealed the need for detailed
numerical solutions of this flow, which, if available, would provide important insight
into the range of validity of perturbation solutions.

This paper is dedicated to Dr Ernest R. Venerus on the occasion of his
retirement after 40 years of dedicated service from Knolls Atomic Power Laboratory,
Schenectady, New York. The author acknowledges useful discussions on this analysis
with Professor J. S. Vrentas and the comments of an anonymous reviewer.

Appendix
The analysis presented above for the capillary flow of a compressible Newtonian

fluid is based on the assumption that the flow is isothermal. The same assumption
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was made by Prud’home et al. (1986), who performed an approximate analysis, and
by van den Berg, ten Seldam & van der Gulik (1993b), who considered thermal effects
in a separate study. So that we may examine thermal effects on compressible flow, we
make several additional assumptions. First, we assume the fluid enters the capillary
with uniform temperature T0 and that the capillary wall is at a constant temperature
T0. It is assumed that the fluid is thermally simple so that conduction is described by
Fourier’s law with constant thermal conductivity k and the specific internal energy
can be expressed in terms of density, temperature and constant specific heat CP . We
also assume that viscosity µ and bulk viscosity ζ are independent of temperature.
Finally, we assume that the fluid density is a linear function of temperature with
thermal expansivity β .

The continuity equation and equations of motion are the same as those given in
(2), (3) and (4). If temperature T0 is scaled by the temperature rise associated with
viscous dissipation, µW 2/kπ2R4ρ2

0 , the equation of state and thermal energy equation
can be written as

ρ = 1 + εP − εT T , (A 1)
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(A 2)

which contain three dimensionless parameters:

λ = βT0, Pe =
CP W

πRk
, εT =

µW 2β

kρ2
0π2R4

.

Temperature boundary conditions for (A2) are given by

∂T

∂r
(0, z̄) = T (1, z̄) = 0, 0 � z̄ � 1, (A 3a, b)

T (r, 0) = 0, 0 � r � 1. (A 4)

The dependent variables can be written as expansions in two perturbation
parameters ε and εT . For Pe 
 1, the equation governing the zero-order temperature
field T (0) is

(1 − r2)
∂T (0)

∂ξ
=

1

r

∂

∂r

(
r
∂T (0)

∂r

)
+ 16[r2 − λ(1 − r2)] (A 5)

where ξ = z̄/Pe. The boundary conditions and initial condition for (A5) can be
written as

∂T (0)

∂r
(0, ξ ) = T (0)(1, ξ ) = 0, 0 � ξ < ∞, (A 6a, b)

T (0)(r, 0) = 0, 0 � r � 1. (A 7)

The set of equations given in (A 5)–(A 7) is similar to the problem considered by van
den Berg et al. (1993b). From (A 5), we see that the viscous dissipationand expansion
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terms tend to cancel each other, depending on the value of λ. For liquids and gases
away from their critical point, this parameter is in the range 0.1 � λ � 1.

Temperature profiles T (0)(r, ξ ) for a range of λ values have been computed by
van den Berg et al. (1993b). T (0) > 0 near the capillary wall where viscous heating
dominates expansion cooling; T (0) < 0 near the centre of the capillary where expansion
cooling dominates viscous heating. For λ � 0.42, the radial-average temperature 〈T (0)〉
monotonically increases with ξ , and for 0.5 < λ � 1, 〈T (0)〉 monotonically decreases
with ξ . For Pe 
 1, however, we need only to consider the temperature field for
ξ � 1, where 〈T (0)〉 ∼ 16( 1

2
− λ)ξ and |T (0) − 〈T (0)〉| � 0.1 for 0 � λ � 1. This means

that over the length of the capillary (0 � ξ � 1/Pe), the temperature field does not
deviate significantly from its value at the entrance. Hence, for εT � 1 and Pe 
 1,
the flow is effectively isothermal.
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